периодичность - ορισμός. Τι είναι το периодичность
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι периодичность - ορισμός

ФУНКЦИЯ, ПОВТОРЯЮЩАЯ СВОИ ЗНАЧЕНИЯ ЧЕРЕЗ НЕКОТОРЫЙ РЕГУЛЯРНЫЙ ИНТЕРВАЛ АРГУМЕНТА
Двоякопериодическая функция; Период функции; Периодичность; Период (теория функций)
  • Графики синуса и косинуса — периодических функций с периодом <math>T = 2\pi</math>.

периодичность         
ж.
Повторяемость какого-л. явления или действия через определенные промежутки времени.
периодичность         
ПЕРИОД'ИЧНОСТЬ, периодичности, мн. нет, ·жен. (·книж. ). ·отвлеч. сущ. к периодичный
; повторяемость (какого-нибудь) явления через определенные промежутки времени. Периодичность кризисов в капиталистическом обществе.
Периодическая функция         

функция, значение которой не изменяется при добавлении к аргументу определённого, неравного нулю числа, называемого периодом функции. Например, sin х и cos x: являются П. ф. с периодом 2π; {x} - дробная часть числа х - П. ф. с периодом 1; Показательная функция ex (если х - комплексное переменное) - П. ф. с периодом 2πi и т.п. Так как сумма и разность двух периодов есть снова период и, следовательно, любое кратное периода есть также период, то каждая П. ф. имеет бесконечное множество периодов. Если П. ф. имеет действительный период, непрерывна и отлична от постоянной, то для неё существует наименьший положительный период Т; всякий другой действительный период той же функции будет иметь вид kT, где k = ±1, ± 2,.... Сумма, произведение и частное П. ф. с одним и тем же периодом являются П. ф. с тем же периодом. Производная П. ф. есть П. ф. с тем же периодом, однако интеграл от П. ф. f (x) с периодом Т будет П. ф. (с тем же периодом) лишь в том случае, когда . Фундаментальная теорема теории П. ф. утверждает, что П. ф. f (x) с периодом Т [подчинённая ещё некоторым условиям, например непрерывная и имеющая в интервале (О, T) лишь конечное число максимумов и минимумов] может быть представлена суммой сходящегося тригонометрического ряда (ряда Фурье) вида:

;

коэффициенты этого ряда выражаются через f (x) по формулам Эйлера - Фурье (см. Тригонометрические ряды (См. Тригонометрический ряд), Фурье коэффициенты).

Для непрерывной П. ф. комплексного переменного возможен случай, когда существуют два периода T1 и T2, отношение которых не есть действительное число: если функция отлична от постоянной, то всякий её период будет иметь вид k1T1 + k2T2, где k1 = 0,±1, ±2,... и k2 = 0, ±1, ± 2,.... В этом случае П. ф. называется двоякопериодической функцией (См. Двоякопериодические функции). Рассматриваются ещё двоякопериодические функции второго и третьего родов; под ними понимают функции, которые при добавлении периодов к аргументу приобретают, соответственно, постоянный или показательный множитель [то есть f (x + T1) = a1f (x) и f (x + T2) = a2f (x) или f (x + T1) = и f (x + T2) -= ea2x f (x)].

Сумма П. ф. с разными периодами не будет периодической функцией в случае, когда периоды несоизмеримы [напр., cos х + cos) не есть П. ф.]; однако функции такого рода обладают многими свойствами, приближающими их к П. ф.; такие функции являются простейшими примерами так называемых почти периодических функций (См. Почти периодическая функция). П. ф. играют чрезвычайно большую роль в теории колебаний и вообще в математической физике.

Βικιπαίδεια

Периодическая функция

Периодическая фу́нкция ― функция, повторяющая свои значения через некоторый регулярный интервал аргумента, то есть не меняющая своего значения при добавлении к аргументу некоторого фиксированного ненулевого числа (пери́ода функции) на всей области определения.

Говоря более формально, функция называется периодической с периодом T 0 {\displaystyle T\neq 0} , если для каждой точки x {\displaystyle x} из её области определения точки x + T {\displaystyle x+T} и x T {\displaystyle x-T} также принадлежат её области определения, и для них выполняется равенство f ( x ) = f ( x + T ) = f ( x T ) {\displaystyle f(x)=f(x+T)=f(x-T)} .

Исходя из определения, для периодической функции справедливо также равенство f ( x ) = f ( x + n T ) {\displaystyle f(x)=f(x+nT)} , где n {\displaystyle n}  — любое целое число.

Все тригонометрические функции являются периодическими.

Παραδείγματα από το σώμα κειμένου για периодичность
1. Периодичность обследования станций становится ежечасной.
2. Чем объясняется загадочная периодичность эпидемий?
3. Устанавливается периодичность государственной кадастровой оценки.
4. Периодичность заседаний комиссии пока не определена.
5. Но периодичность обновления закрытая внутренняя информация.
Τι είναι периодичность - ορισμός